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Abstract
Background  The incorporation of artificial intelligence (AI) into point-of-care ultrasound (POCUS) platforms has 
rapidly increased. The number of B-lines present on lung ultrasound (LUS) serve as a useful tool for the assessment of 
pulmonary congestion. Interpretation, however, requires experience and therefore AI automation has been pursued. 
This study aimed to test the agreement between the AI software embedded in a major vendor POCUS system and 
visual expert assessment.

Methods  This single-center prospective study included 55 patients hospitalized for various respiratory symptoms, 
predominantly acutely decompensated heart failure. A 12-zone protocol was used. Two experts in LUS independently 
categorized B-lines into 0, 1–2, 3–4, and ≥ 5. The intraclass correlation coefficient (ICC) was used to determine 
agreement.

Results  A total of 672 LUS zones were obtained, with 584 (87%) eligible for analysis. Compared with expert reviewers, 
the AI significantly overcounted number of B-lines per patient (23.5 vs. 2.8, p < 0.001). A greater proportion of zones 
with > 5 B-lines was found by the AI than by the reviewers (38% vs. 4%, p < 0.001). The ICC between the AI and 
reviewers was 0.28 for the total sum of B-lines and 0.37 for the zone-by-zone method. The interreviewer agreement 
was excellent, with ICCs of 0.92 and 0.91, respectively.

Conclusion  This study demonstrated excellent interrater reliability of B-line counts from experts but poor agreement 
with the AI software embedded in a major vendor system, primarily due to overcounting. Our findings indicate that 
further development is needed to increase the accuracy of AI tools in LUS.
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Introduction
The European Society of Cardiology guidelines for heart 
failure currently recommend the use of chest X-ray and 
lung ultrasound (LUS) to confirm heart failure and inves-
tigate other potential causes of breathlessness [1]. LUS 
is an excellent tool for assessing pulmonary edema and 
interstitial lung syndrome (ILS) by detecting the pres-
ence of B-lines. Multiple studies have demonstrated that 
LUS is superior to chest X-ray in evaluating extravascular 
lung water (EVLW) [2–4]. LUS is also highly accessible 
and more easily implemented since it can be performed 
at the bedside. Additionally, there are significant prog-
nostic implications for discharged patients with residual 
pulmonary congestion [5], a condition that is difficult to 
identify on the basis solely of clinical status and patient 
weight. Therefore, there is growing support for tailoring 
the diuretic therapy on the basis of LUS findings aimed 
at reducing the risk of rehospitalization [6], especially 
if this approach can be applied more objectively and 
standardized.

A central component in LUS is the detection of B-lines, 
which are defined as vertical bands of hyperechoic laser-
like artifacts originating from the pleural line that trans-
verse the total sector without fading and occur with ILS 
[7, 8]. The number and morphology of B-lines have been 
shown to be correlated with the amount of EVLW [9], 
however, they are not specific to cardiogenic pulmonary 
oedema [8]. Although the detection and assessment of 
B-lines requires experience, high inter- and -intraob-
server agreement among experts has been demonstrated 
in COVID-19 [10] and ILS [11] patients. This makes the 
assessment suitable for standardization, potentially with 
the assistance of artificial intelligence (AI) embedded in 
the software of various ultrasound vendors. The software 
utilized in this study is part of the globally leading ultra-
sound platform [12], offering real-time B-line counting 
and aiming to improve inter- and intraobserver reliabil-
ity between examinations, even when conducted by less 
experienced examiners.

The aim of this study was to evaluate the accuracy of 
AI software from a major ultrasound vendor in detecting 
B-lines via a 12-zone protocol in a heterogeneous, real-
world cohort, including patients with heart failure, and to 
validate these results against expert assessments.

Methods
Patient selection
This was a single-center prospective study conducted 
during 2023 at one tertiary university hospital in Sweden. 
Adult patients (> 18 years) hospitalized at the Internal 
Medicine Department, including the day care unit, and 
at the Cardiology Department at the University Hospi-
tal of Skåne were recruited for the study. The patients 
were being predominantly treated for various respiratory 

symptoms, with acutely decompensated heart failure 
being the most common main diagnosis. The participants 
had to understand the purpose of the study and be able to 
provide informed consent. Additionally, they needed to 
be able to sit in an upright position. Patients with known 
lung disease or pneumonia were excluded, except for 
those with pulmonary embolism and asthma.

Study setting
The included patients were examined bedside using a 
Venue GO ultrasound system (General Electric Health-
care, Wauwatosa, WI, USA) with a curved (C1-5) low-fre-
quency (1.5–5.7 MHz) probe set to an imaging depth of 
16 cm. Each patient was examined in a total of 12 zones, 
according to the zones in Fig. 1. Initially, the patient was 
placed in a supine position with the bed inclined at 45 
degrees, and 4 zones were recorded on each anterolateral 
side of the thorax. The zones were divided horizontally 
by the parasternal line, the anterior axillary line, and the 
posterior axillary line. The anterior chest wall extended 
from the sternum to the anterior axillary line and was 
further divided into upper and lower halves. The lateral 
zone spans from the anterior to the posterior axillary line 
and was also divided into upper and basal halves. The 
patient subsequently seated in an upright position at the 
side of the bed, and 2 zones on each side of the back were 
recorded. The dorsal zones were divided by the height 
of the tip of the scapula, creating the posterior superior 
and posterior inferior zones. The transducer was held in 
the sagittal plane between two rib spaces, and recordings 
lasted 4–5 s per zone. All examinations were performed 
by one examinator to reduce the interrater reliability.

The auto B-line tool determines the overall lung score 
by identifying and quantifying B-lines in real time, 
emphasizing them visually, and showcasing the image 
with the maximum B-line count (Fig.  2). At the end of 
the scan, the tool calculates the total B-line count by 
selecting the frame with the highest number of B-lines 
displayed within a pictogram for each zone. The auto 
B-line tool was utilized in all recordings, categorizing the 
B-lines into 0, 1, 2, 3, 4, and > 5 for each zone. Zones that 
were not appropriate for assessment due to pleural effu-
sion, nonvisible pleura, or suboptimal recording quality 
were excluded from the B-line correlation analysis but 
are presented in the results. The AI results were blinded, 
and two experts in LUS interpretation independently cat-
egorized the B-lines for each zone into 0, 1–2, 3–4, and 
≥5. To identify potential misinterpretations caused by 
the AI tool, all zones where the AI tool detected the ≥1 
B-line were carefully reviewed to determine the type of 
misinterpretation, if any. These were subsequently cate-
gorized as follows: evaluating the adjacent rib space with 
or without B-lines, misinterpreting shred lines, or assess-
ing the rib shadow adjacent to the center of the screen. 
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Fig. 2  The auto B-line tool counts B-lines in real-time and highlights the frame with the highest B-line count

 

Fig. 1  Scanning zones in the 12-zone protocol. (A) The anterior zones are divided into four regions on each hemithorax, delineated by the parasternal line 
(PSL), anterior axillary line (AAL), and posterior axillary line (PAL). (B) The posterior zones are divided by the paravertebral line (PVL) and the PAL, comprising 
a total of six zones per hemithorax
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The ultrasound expert physicians had extensive experi-
ence in ultrasound. One is a cardiologist with expertise 
in cardiac ultrasound with experience in LUS at a tertiary 
center, while the other is an internal medicine consultant 
with experience in LUS, the author of the region-wide 
applicable guidelines for LUS and the ultrasound director 
for the POCUS-academy, a hospital-wide organization 
for training and clinical use of POCUS. The examinator 
was an internal medicine resident in training for POCUS. 
In conjunction to LUS, the examinator also conducted a 
clinical evaluation of each patient’s volume status.

This study was approved by the Regional Ethics Review 
Board of Lund, EPN. Written informed consent was 
obtained from all patients.

Statistics
Categorical variables are expressed as frequencies (per-
centages) and continuous variables are expressed as the 
means ± standard deviations or medians (interquartile 
range). The experts classified the B-lines into catego-
ries of 0, 1–2, 3–4, and > 5, which differed from the cat-
egorization of the AI software, as described above. For 
the analysis, B-lines detected by the AI software were 
adjusted to 1.5 for cases categorized as 1 or 2, and 3.5 
for those categorized as 3 or 4, to align the comparisons 
more closely. The number of B-lines was compared zone-
by-zone, as was the total sum for each patient. To assess 
interrater agreement, an intraclass correlation coefficient 
(ICC) analysis was performed. The targets were treated 
as random effects, while the raters were considered fixed 

effects. A two-way mixed model was used to compare the 
total B-line count between the algorithm and the experts, 
measuring absolute agreement for correlation. A 95% 
confidence interval (CI) was applied to the analysis. The 
ICC was analyzed for the total sum of B-lines as well as 
on a zone-by-zone basis. Furthermore, Bland-Altman 
analysis was used to assess the agreement between the 
AI counts and expert counts; mean value of the two mea-
surements [13]. All analyses were performed using SPSS 
29 (IBM. Inc., USA).

Results
In total, 672 LUS zones were obtained from 55 patients. 
The baseline characteristics and diagnoses are presented 
in Table 1. The most common diagnosis was congestive 
heart failure (35%). The median B-line count and B-line 
distribution among the reviewers and AI are presented in 
Table  2. There was a significant difference in the B-line 
count between the reviewers (2.8) and the AI (23.5), 
p < 0.001. A high proportion of B-lines > 5 (38%) was 
found by the AI compared with the reviewers (4%), with 
significant differences between the groups (p < 0.001).

Among the 672 recorded clips, 574 (85%) were used for 
the analysis. Among the excluded clips, 11 (1.6%) were 
assessed as being of insufficient quality for evaluation, 
26 (3.9%) did not properly identify the pleural line, and 
51 (7.6%) exhibited pleural effusion. Among the 26 clips 
without an identifiable pleural line, 22 (85%) were in the 
Zone 2 L, where the presence of the heart obscured the 
lung sector. Pleural effusions were predominantly found 
in the posterior inferior zones, 32 (63%), and lateral 
zones, 15 (29%).

The total sum of B-lines assessed by the reviewers was 
significantly greater in hypervolemic patients than in 
euvolemic patients, 4.6 and 0.75 respectively (p = 0.04).

The mean score for each lung zone, as evaluated by 
both the reviewers and the AI, is presented in Table  3, 
along with the corresponding ICC. There was a slight 
tendency for higher B-line counts in the R6 and L6 zones 
across all assessments, and the ICC values varied and 
were generally low among the different zones. All zones 
where the AI assessed ≥1 B-line were reviewed by exam-
ining the loops to identify where potential B-lines were 
detected. This review resulted in three categories. Among 
the 574 zones assessed by the AI, 81 (14%) were misinter-
preted when the adjacent rib space was evaluated, with 
or without B-lines. There were 6 zones (1%) that involved 

Table 1  Patient characteristics of the study population
Patient characteristics N = 55
Age (y, mean SD range) 77 ± 13
Male 36 (66%)
Peripheral status
  Euvolemic 33 (60%)
  Hypervolemic 22 (40%)
Diagnosis
Heart failure
Atrial fibrillation
Chest pain

19 (35%)
6 (11%)
4 (7%)

Dyspnea 4 (7%)
Infection 4 (7%)
PE/DVT
Kidney failure
Syncope

2 (4%)
2 (4%)
2 (4%)

Other 12 (22%)

Table 2  Distribution of total B-lines by method of quantification and median B-line count for all participants
Method
of quantification

Median B-line count per patient (Q1:Q3) B-line distribution (% of sequences). n = 584
0 B-lines 1–2 B-lines 3–4 B-lines ≥ 5 B-lines

Mean expert visual agreement 2.8 (0:8.5) 457 (80%) 66 (12%) 29 (5%) 22 (4%)
AI count 23.5 (17.7:31.0) 277 (48%) 14 (2%) 64 (11%) 219 (38%)
Q1:Q3 – first and third quartile; n – total number of sequences
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subpleural consolidations with shred lines (C-lines), and 
in another 6 zones (1%), the AI misinterpreted rib shad-
ows between two intercostal spaces as B-lines.

The agreement between the reviewers was high 
for both the total sum method and the zone-by-zone 
method, indicating excellent interreviewer agreement, as 
presented in Table 4. The correlation between the review-
ers and the AI was slightly greater when the zone-by-
zone method was used than when the total sum method 
was used; however, the overall correlation coefficients 
were poor.

A Bland-Altman Plot was generated for the reviewers 
and the AI, as presented in Fig. 3. The mean of the differ-
ence and bias was 1.86 ± 2.15, and the limits of agreement 
were − 2.35 and 6.07, respectively. The Bland-Altman plot 
shows that a significant number of scans have a high pos-
itive difference, with a mean of 2.5.

Discussion
In this study, we compared the B-line counts determined 
by an AI-software embedded in a commercially avail-
able ultrasound device to those assessed by LUS expert 
physicians. The comparison revealed a poor correla-
tion between the AI and the expert evaluations, both in 
terms of the total sum and with regard to the zone-by-
zone method. However, the interreviewer agreement was 
excellent. LUS image acquisition aids in the confirma-
tion of congestive heart failure as well as the detection 
of residual lung congestion and AI has the potential to 

facilitate the management of patients with heart failure 
and help reduce the interoperator variability. Neverthe-
less, our results suggest that further development is 
needed in the algorithm of the automated tool to increase 
its correlation with expert assessments before it can be 
considered reliable for clinical decision making.

The total sum of B-lines per patient differed widely 
between the assessments. Overall, the AI tended to over-
count B-lines throughout all the lung zones. The anterior 
(zone 2) and posterior superior (zone 5) zones exhibited 
the lowest correlation, where the overcounting occurred 
the most. The heart being in view in the left anterior 
zones can presumably interfere with image quality and 
affect the AI assessment. Interestingly, the lateral and 
posterior inferior zones exhibited greater correlation, 
even though lateral image acquisition is typically more 
challenging to obtain. Another observation was that the 
AI predominantly categorized B-lines as either 0 (48%) 
or ≥ 5 (38%), with very few assessments falling between 0 
and 5 (13%). It appears that when the AI detects B-lines, 
there is a tendency to overestimate their quantity. The 
Bland-Altman plot indicates that many zones were 
assessed as having 5 B-lines by the AI, whereas the visual 
assessment indicated 0 B-lines. The cause of the over-
counting is not entirely clear, but several factors could be 
involved. B-lines can appear in various lung pathologies 
and conditions. During the SARS-CoV-2 pandemic, an 
expert consensus document was published that proposed 
a distinction between B-lines and comet tail artifacts 

Table 3  Mean of the zones and ICC
Lung zone Reviewer 1 Reviewer 2 AI *ICC (95% CI)
R1 0.32 0.27 1.83 0.31 (-0.11-0.59)
R2 0.40 0.19 2.90 0.17 (-0.17-0.46)
R3 0.59 0.47 2.45 0.35 (-0.11-0.63)
R4 0.64 0.49 2.40 0.37 (-0.13-0.66)
R5 0.27 0.28 2.43 0.17 (-0.17-0.45)
R6 0.93 0.78 2.38 0.63 (0.06–0.84)
L1 0.65 0.46 2.04 0.50 (0.04–0.73)
L2 0.40 0.12 2.56 0.23 (-0.26-0.59)
L3 0.67 0.63 2.09 0.55 (0.09–0.76)
L4 0.78 0.75 2.20 0.50 (-0.17-0.75)
L5 0.26 0.16 2.53 0.18 (-0.17-0.47)
L6 0.91 0.77 2.77 0.48 (-0.10-0.75)
*ICC between the mean of the reviewers and AI

Table 4  Intraclass correlation between expert agreement and AI tool
Method
of quantification, total sum

ICC 95% CI

Between reviewers 0.92 0 0.86– 0.96
AI and reviewers 0.28 -0.12–0.64
Method
of quantification, zone-by-zone

ICC 95% CI

Between reviewers 0.91 0.89– 0.93
AI and reviewers 0.37 -0.01–0.59
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[14]. True B-lines are associated with a smooth pleural 
reflection caused by cardiogenic pulmonary edema and 
present in a diffuse pattern. In contrast, comet tail arti-
facts appear in various lung disorders with irregular, frag-
mented pleural reflections, which can be focal or diffuse 
and may vary in width, resembling a comet with a narrow 
head and a wide tail. One possible explanation for our 
findings is that the AI software may struggle to differenti-
ate between these two entities. Furthermore, our review 
revealed that 14% of the B-lines identified by the AI were 
in fact based on evaluation of the adjacent rib space, often 
without any B-lines present in those adjacent spaces. This 
occurred despite the examinations being conducted with 
the intercostal space centrally positioned and utilizing 
the prespecified lung setting on the machine.

Another important consideration is that, given the 
variety of conditions in our cohort, some patients had 
lung consolidations that presented with irregular bound-
aries, often resembling fractal lines. These boundaries, 
separating consolidated lung tissue from the underlying 
aerated lung, can produce shred signs or C-lines, which 
might be misinterpreted by the software as true B-lines. 

Our review revealed that this misinterpretation occurred 
in 1% of the B-lines assessed by the AI.

Previous studies reported better agreement between AI 
and experts’ visual assessment. Short et al. [15], investi-
gated the reliability of automated B-lines with the same 
software used in our study, which included only four 
patients, but demonstrated good to excellent interob-
server reliability (ICC 0.79). This study has been utilized 
as a reference in the marketing of the AI-embedded soft-
ware. Russel et al. [16], assessed novice learners’ ability to 
obtain LUS images with AI quantifying B-lines via these 
images, showing a fair correlation when compared with 
that of an expert reviewer, who used the same AI soft-
ware as that used in our study. However, the ICC between 
the AI and expert was only 0.56. Furthermore, Damoda-
ran et al. [17] studied B-lines in COVID-19 patients and 
compared the visual assessment with AI via software, the 
results revealed similar ICCs of 0.52-0-53. These figures 
indicate barely a moderate correlation and more closely 
align with our findings than the reference study from 
Short et al. However, numerous neural network and deep 
learning algorithms have been developed recently, dem-
onstrating reliable performance in quantifying B-lines, 

Fig. 3  Bland-Altman Plot of the reviewers and the AI. The x-axis displays the average B-lines for both the AI and the reviewers, while the y-axis shows the 
mean difference between the measurements. The red line indicates the average difference between the two measurements (1.86), with the upper and 
lower lines representing the 95% limits of agreement between the two measurement methods
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albeit with limitations such as a small number of patients 
and potential bias associated with industry-sponsored 
studies [18, 19]. A key distinction in our study is the use 
of a 12-zone protocol, which specifically included poste-
rior zones, with patients positioned upright. However, a 
recent study showed that a 2-zone anterior-superior tho-
racic ultrasound protocol can provide similar informa-
tion to an 8-zone approach in datasets of patients with 
heart failure [20]. 

AI approaches can be divided and categorized into 
different methodologies. Initial efforts often focus on 
visual perceptions with prespecified algorithms. How-
ever, the future probably lies in leveraging large datasets 
and employing deep learning techniques in conjunction 
with expert visual assessments to increase accuracy and 
reliability. In line with this, recently a deep learning AI 
model was developed that demonstrated a strong corre-
lation with expert-level B-line quantification in detecting 
B-lines, while outperforming a group of operators with 
varying levels of experience [19]. The quantification of 
B-lines in patients with heart failure is likely to become 
even more prevalent in the future because of its bedside 
applicability, speed, and non-radiation nature. Therefore, 
this field is only at its beginning, and AI tools for quan-
tification of B-lines will develop into more accurate sys-
tems becoming a certainty in everyday practice.

Our study has several limitations that need to be high-
lighted. First, the study cohort could have been larger 
to obtain more accurate correlations, even though 672 
zones were scanned. Second, only one examiner was used 
to obtain the images which may have influenced the qual-
ity of both the AI and visual expert counting. Third, we 
used a heterogeneous cohort of patients to mimic the 
real-world practice, making it difficult to compare our 
findings with those of other studies that included more 
homogenous cohorts. Fourth, the AI software had the 
ability to count only 0–4 and ≥5 B-lines per lung zone. 
Although counting more than 5 B-lines in one sector 
becomes less relevant and is sufficient to label it as an 
ILS, this limitation affects the overall correlation analysis.

Conclusion
Our study demonstrated that the AI-software imbedded 
in a major vendor system is poorly correlated with visual 
expert agreement when B-lines are counted. While the 
interrater reliability was excellent, the AI tended to over-
count B-lines across all the lung zones. This suggests that 
further development is needed to improve the accuracy 
of the AI tool, and that caution should be exercised when 
AI is used for B-line assessment in clinical practice.
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